rakon

IT3200C

The IT3200C employs an analogue ASIC for the oscillator and a high order temperature compensation circuit in a 3.2 x 2.5 mm size package. This SMD Temperature Compensated Crystal Oscillators provides voltage control option with a wide frequency ranges available from 10 MHz to 40 MHz. It is built using rakon's proprietary processes specifically targeted at high performance GNSS applications.

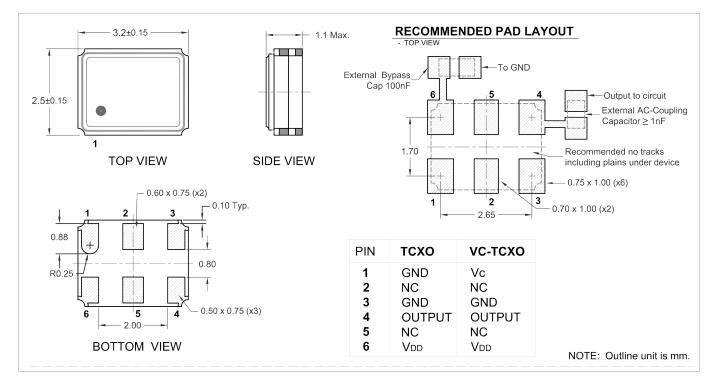
Features

- Frequency slope and perturbation specifications can be customized to the application requirement
- Excellent phase noise performance
- Standard temperature stability choices are ±0.5, ±1.0, ±1.5 and ±2.5 ppm over temperature from -40 to 85°C

Applications

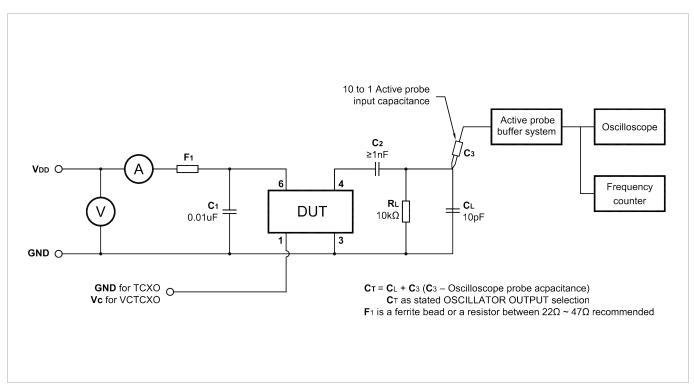
- GNSSSmartphone
- o PND
- Consumer
- Communications
- o Wi-Fi

3.2 x 2.5 mm


Standard Specifications

Parameter	Min.	Тур.	Max.	Unit	Test Condition / Description
Nominal frequency		10 - 40		MHz	
Frequency calibration			±1	ppm	Offset from nominal frequency measured at 25°C \pm 2°C
Reflow shift			±1	ppm	Two consecutive reflows as per attached profile after 1 hour recovery at 25°C
Operating temperature range	-40		85	°C	The operating temperature range over which the frequency stability is measured
Frequency stability over temperature			±0.5 – ±2.5	ppm	Referenced to the midpoint between minimum and maximum frequency value over the specified temperature range ¹ Control voltage set to midpoint of Vc
Frequency slope			±0.05 to ±1	ppm/°C	Minimum of one frequency reading every 2°C over the operating temperature range ²
Static temperature hysteresis			0.6	ppm	Frequency change after reciprocal temperature ramped over the operating range. Frequency measured before and after at 25°C
Sensitivity to supply voltage variations			±0.1	ppm	V_{DD} varied ±5% at 25°C
Sensitivity to load variations			±0.1	ppm	$\pm 10\%$ load change at $25^{\circ}C^{2}$
Long term stability			±2	ppm	Frequency drift over 1 year at 25°C
Supply voltage (V _{DD})		2.4 - 3.7		V	With a tolerance of ±5%
Supply current			2	mA	At maximum V _{DD} ²
Output voltage level	0.8			V	At minimum $V_{\text{DD, s}}\text{pecified}$ for load stated in oscillator output section at 25 $^\circ\text{C}^2$
Output waveform					DC coupled clipped sinewave ³

¹ Parts should be shielded from drafts causing unexpected thermal gradients. Temperature changes due to ambient air currents on the oscillator can lead to short term frequency drift.


² Specified for load stated in oscillator output section at 25°C.

³ External AC-Coupling capacitor required. 1 nF or greater recommended.

Model Outline and Recommended Pad Layout

Test Circuit

