

IT2200J

The IT2200J employs an analogue ASIC for the oscillator and a high order temperature compensation circuit in a 2.5 x 2.0 mm size package. The device can be placed in power down mode through a single input pin. During standard operation, power consumption is minimised by operating down to a supply voltage of 1.8 to 3.3V.

The IT2200J's high stability, low power consumption, small footprint and powerful compensation method makes it a TCXO ideally suited for demanding GNSS mobile applications.

Features

- Excellent phase noise performance
- Low start up drift rate
- Power down mode
- Standard temperature stability of ±0.5 ppm over wide temperature ranges

Applications

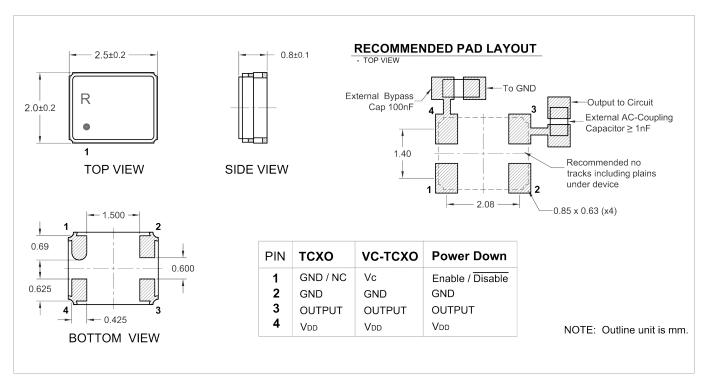
- Time and frequency reference
 - GNSS
 - Smartphone
 - Communications
 - Consumer

2.5 x 2.0 mm

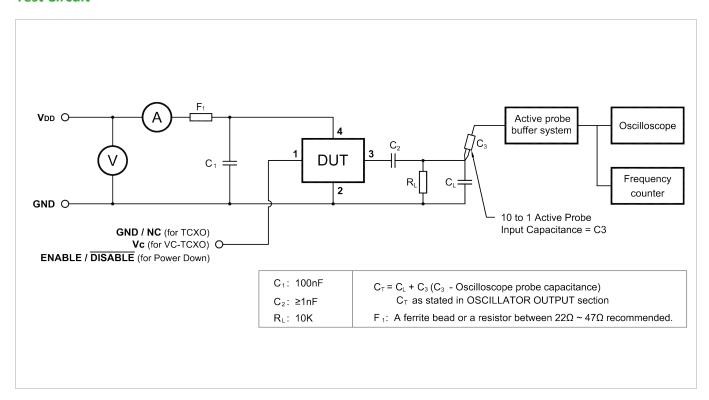
Standard Specifications

Parameter	Min.	Тур.	Max.	Unit	Test Condition / Description
Nominal frequency		10 - 52		MHz	
Frequency calibration			±1	ppm	Offset from nominal frequency measured at 25°C ±2°C
Reflow shift			±1	ppm	Two consecutive reflows as per attached profile after 2 hours relaxation at 25°C
Operating temperature range	-40		85	°C	The operating temperature range over which the frequency stability is measured
Frequency stability over temperature			±0.5	ppm	Referenced to the midpoint between minimum and maximum frequency value over the specified temperature range ¹ . Control voltage set to midpoint of Vc
Frequency slope			±0.05 - ±1	ppm/°C	Minimum of one frequency reading every 2°C over the operating temperature range ¹
Static temperature hysteresis			0.6	ppm	Frequency change after reciprocal temperature ramped over the operating range. Frequency measured before and after at 25°C
Sensitivity to supply voltage variations			±0.1	ppm	V _{DD} varied ±5% at 25°C
Sensitivity to load variations			±0.2	ppm	±10% load change at 25°C
Long term stability			±1	ppm	Frequency drift over 1 year at 25°C
Supply voltage (V _{DD})		1.8 – 3.3		V	With a tolerance of ±5%
Supply current			2.2	mA	At minimum V _{DD} ²
Output waveform					DC coupled clipped sine wave ³
Output voltage level	0.8			V	At minimum supply voltage ²
Output load		10		kΩ/pF	10 kΩ //10 pF ±10%
Start-up time (amplitude)			0.5	ms	Within 90% of the minimum specified output level
Start-up time (frequency)			2	ms	Within ±0.5 ppm of steady state frequency

¹ Parts should be shielded from drafts causing unexpected thermal gradients. Temperature changes due to ambient air currents on the oscillator can lead to short term frequency drift.


² Specified for load stated in oscillator output section at 25°C.

³ External AC-Coupling capacitor required. 1 cp


nF or greater recommended.

Model Outline and Recommended Pad Layout

Test Circuit

